Structure-activity relationship of uniconazole, a potent inhibitor of ABA 8'-hydroxylase, with a focus on hydrophilic functional groups and conformation.

نویسندگان

  • Yasushi Todoroki
  • Kyotaro Kobayashi
  • Hidetaka Yoneyama
  • Saori Hiramatsu
  • Mei-Hong Jin
  • Bunta Watanabe
  • Masaharu Mizutani
  • Nobuhiro Hirai
چکیده

The plant growth retardant S-(+)-uniconazole (UNI-OH) is a strong inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, stomatal closure, flowering, seed dormancy, and other physiological events. In the present study, we focused on the two polar sites of UNI-OH and synthesized 3- and 2''-modified analogs. Conformational analysis and an in vitro enzyme inhibition assay yielded new findings on the structure-activity relationship of UNI-OH: (1) by substituting imidazole for triazole, which increases affinity to heme iron, we identified a more potent compound, IMI-OH; (2) the polar group at the 3-position increases affinity for the active site by electrostatic or hydrogen-bonding interactions; (3) the conformer preference for a polar environment partially contributes to affinity for the active site. These findings should be useful for designing potent azole-containing specific inhibitors of ABA 8'-hydroxylase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis.

Plant growth retardants (PGRs) reduce the shoot growth of plants by inhibiting gibberellin biosynthesis. In this study, we performed detailed analyses of the inhibitory effects of PGRs on Arabidopsis abscisic acid (ABA) 8'-hydroxylase, a major ABA catabolic enzyme, recently identified as CYP707As. In an in vitro assay with CYP707A3 microsomes expressed in insect cells, uniconazole-P inhibited C...

متن کامل

Enlarged analogues of uniconazole, new azole containing inhibitors of ABA 8'-hydroxylase CYP707A.

We enlarged the uniconazole (UNI) molecule to find a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, and synthesized various UNI derivatives that were substituted with hydrophilic and hydrophobic groups at the 4-chlorine of the phenyl group of UNI using click chemistry. Considering its potency in ABA 8'-hydroxylase inhibition, its small effect on seedling growth, and its ease of appli...

متن کامل

Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of...

متن کامل

Abscinazole-E1, a novel chemical tool for exploring the role of ABA 8'-hydroxylase CYP707A.

We developed abscinazole-E1 (Abz-E1), a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase (CYP707A). This inhibitor was designed and synthesized as an enlarged analogue of uniconazole (UNI), a well-known plant growth retardant, which inhibits a gibberellin biosynthetic enzyme (ent-kaurene oxidase, CYP701A) as well as CYP707A. Our results showed that Abz-E1 functions as a potent inhibitor...

متن کامل

Selectivity improvement of an azole inhibitor of CYP707A by replacing the monosubstituted azole with a disubstituted azole.

The plant growth-retardant uniconazole (UNI), a triazole inhibitor of gibberellin biosynthetic enzyme (CYP701A), inhibits multiple P450 enzymes including ABA 8'-hydroxylase (CYP707A), a key enzyme in ABA catabolism. Azole P450 inhibitors bind to a P450 active site by both coordinating to the heme-iron atom via sp2 nitrogen and interacting with surrounding protein residues through a lipophilic r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioorganic & medicinal chemistry

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2008